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Abstract

In this paper an axiomatic development of multistate systems

is presented. Three types of coherence based on the strength of

the relevancy axiom are studied. The strongest of these haB been

Investigated previously by El-Neweihi, Proachan, and Sethuraman.

One of the weaker types of coherence permits wider applicability

to real life situations without sacrificing any of the mathematical

results obtained by El—Neweihi, Proschan, and Sethuraman. The con-

cept of system performance Is formalized through expected utility

and the effect of component improvement on system performance is

V 
studied using a generalization of Birnbaum’s reliability Importance.

~Research has been partially supported by ONR Contract N000l~3—76—C0839(Principal Investigator, Henry W. Block)
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1. Introduction

Most of the reliability literature deals with binary systems

of binary components in which the only two states are functioning

and failed. Some recent work by Barlow and Wu [2~ , El-Neweihi, Proachan,

and Sethuraman [3) (referred to as EPS throughout), and Ross [~
]

treat the general case of more than two states. This Idea is quite

useful since in many real life situations components and/or systems

can be in intermediate states. In addition, multistate systems

can be used to incorporate the idea of spare parts where a corn—

ponent’s being in state J means that in addition to the presently

operating component, there are j—l spares.

Ross considers components which assume arbitrary real values

and investigates stochastic and dynamic aspects of’ the system.

Barlow’s definition of multistate systems depends on a set theoretic

decomposition which arises in the binary case. EPS adopt an axio-

matic definition which generalizes the axiomatic definition of a

binary coherent system. The multistate coherent systems in their

paper include as a subclass those of Barlow and Wu. However the relevancy

axiom of EPS is very strong. In this paper, we consider this axiom

and two weaker relevancy axioms which allow a certain real life

model which is not permitted under the strongest axiom. Further—

more all of the results of EPS hold under one of the weaker assump-

tions. Deterministic models are developed in section 2. In section

3 the stochastic performance of a system is considered in terms of

expected utility while in section 1$ , a generalization of Birnbaum’s

reliability importance Is investigated.

The notation of Barlow and Proschan ~i] and EPS [3J is used.
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2. DeterminIstic Properties of Multistate Monotone Systems

We begin by making a formal definition of a multistate

monotone system which generalizes the notion of a monotone system

in the binary case. - -

DefinItion 2.1. Let • be a function with domain (0,1,..., M}~
and range (0,1,..., M} where M and n are positive integers. Then

$ is sald to be a multistate monotone system (MMS) If it satisfies

(I)  $(x) is increasing in x > 0

(ii) mm x1 < •(x) < max X
i1<i<n l<i<n

It is easy to see that (I) implies that +(xv y ) > $(x) V •(y~)

for all x,j > 0. Furthermore (I) is implied by this condition
- 

V 
since if’ ~ > x, then •(~

) = $(x ~~~) > $(x) ~l •(~) > •(x). Analogous

remarks show that the inequality $(x,y~) < •(x) A $(~) for all

> 0 is also equivalent to (I).

Under the assumption of’ (I )  it is easy to verify that (ii)

Is equivalent to the condition that $(k) = k for all k £ (0,1,..., M}.

We next consider three relevance axioms, The strongest of

these has been considered by EPS. This leads to a type of coherence

which we shall call strong coherence. The successively weaker

types of’ coherence will be called coherence and weak coherence.

‘Definition 2.2. Let •(x) be a MMS. If:

(i) for any component I and state 1, there exiet5 x such

that •(j 1,x) — J while •(L1,x) ~I 3 for 2. j~ 1, then •(x) is said

to be strongly coherent.

~ 

V V ~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
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(ii) for any component I and state 3 > 1, there exists x such

that $((j—l)1 x) < •(j ~~,x ),  then •(x) is said to be coherent.

(iii) for any component ± and state 3, there exists x such
V 

that $( j 15 x ) # $(2.~ ,x) for some £ 
~ 3, then $(x) Is said to be

weakly coherent. V

By taking 3 — 0 in condition (iii) we see that for any com-

ponent I, there exists x such that $(01,x) < $(L~,x) for some

£ # 0 and consequently •(01,x) < $(M1,x). Conversely if’ for any

component I, there exists x such that $(01,x) < 4,(M1,x), then for

any state 3, 0 < 3 < M , •( j 1,x) cannot be equal to both $(01,x)

and $(M1,x). Therefore we see that condition (Iii) may be replaced

by the equivalent condition:

(iii’) for any component I, there exists x such that $(01,x) <

In practice condition (III’) may be easier to check.

It is obvious that (I)  implies (ii)  which in turn implies ( i i i)

in Definition 2.2. We next present examples which show that neither

of the reverse implications holds.

Example 2.1. A NTIS which Is coherent but not strongly coherent.

Consider a system of’ n(>l) components with M + l(>2) states

having structure function $(x) — [.1 Z x1} where ~“J is the greatest
i—i

integer function. It is easily seen to be a monotone system. To

see that It is coherent, note that $(j1,j) — 3 while +((j—l),,1) — 3 — 1.

Next we show that it cannot be strongly coherent. To be strongly

coherent, for any component i and state 3 e (1,..., TI—i), there

_ _ _ _  _ _ _ _ _ _ _  _ _ _ _  
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would have to exist x such that $((J—l)i,x) < 3 — 1 < =

= 3 < 3 + 1 < •( (j+ l ) 1,x) .  That Is , ~~~~~~~~~~~~~~~~~~ ~~~ 
— 

~~ 
<

= i~i’~I1 = < j  + 1. < ~~~~~~~~~~~~~~ Thus ,

— ~~~~~ ~ 
xk) = > 1. This cannot happen since n > 2. 

V

n n ~~1 n —

The structure function of this example can be used to stochas—

tically model the following physical situation. Consider a power

V generating system consisting of n power plants. Each plant is V

either operational or not operational and the system state is

taken to be the number of operational plants (and thus TI-n). The

components assume the values 1,..., M — 1 wIth zero probability.

Thus it seems desirable to have a definition of coherence which is

general enough to include this structure function.

Example 2.2. A weakly coherent system which Is not coherent.

Consider •(x) defined by the lattice below.

~ (z,i ~

4(1,1) 111 4~(I , z ) 1 1  I

‘2- ‘
c.1(l ~~~N ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4~(O~ ’) I

~~c!t1(0 ,0)*0

—. - - 

~~~~~~~~~~~~~~~~~~~~ 

. . ,,. . . - .. p. - V~~~~s~~~~~
-r

~~~~~~~~~~~~~~~~~~~~~~ — -~~~~~~~~~~~~~~~ -~~~~~~~~-— ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ - . 
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Clearly •(x) Is monotone. Further, $(0,0) < •(2,0) and

~~0,0) < $(0,2) so that $(x) is weakly coherent. But $(1,x2) — $(0 ,x 2 )

for x 2 = 0,1 and 2. Consequently, $(x) is not coherent.

As with binary systems, a concept of duality may be defined.

DefinitIon 2.3. For any MMS $(x) we define the dual of $(x)

by the equation ~
D(x) = — •(TJI—x).

It is easy to verify that the dual of a MMS is also a NTIS.

Furthermore we show that the dual Inherits the type of coherence

possessed by the original NTIS.

Proposition 2.1. For any NTIS •(x), the dual ,D(x) possesses

the same type of coherence as •(x).

Proof. First, suppose that •(x) is strongly coherent. Then

for any component I and state M — 3, there exists y such that

= N — j  while $ ( ( M _ L ) ~~,~~) ~ M — 3 for all £ ~ 3.

Letting x = M — y, we have ~tP(J1,x) = M — $((M—J )1,~ ) = 3 while

,D(L ,x) = M — $((M_2.)~ ,y) ~ 3 for 2. ~ 3. Thus ,D(x) is strongly

coherent.

Next suppose $(x) is coherent. Then for any component I and

state 3 > 1, there exists a vector ~ so that $((M—J )1,y) <

Letting x = M — 
~~~~, we have ,D(j1,x) = TI —

> N — 4~~~M—j +l ) 1,~~)  $D ((j ,...l) ,x) and so 4~ (x )  is coherent.

Finally suppose that •(x) Is weakly coherent. Then there

exists ~ so that $(0~,~ ) < $(M1,~ ). Letting x = TI — ~~~~, we have

$D(o ,x) = M — $(M1,~ ) < N — $(0~ ,~ ) = ,D(M ,x). h ence $D(x) Is

weakly coherent.

L ~~~~~~~~~~~~ - - ~~~~~~ - — - ----- -  - - _ _ _ _ _ _ _ _ _  - 
V V ~~ 
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In the next definition we generalIze the concept of a path

vector. -

Definition 2.~i. Let •(x) be a MMS. If •(x) — 3, the x is
called a state ~ vector. If’ in addition, $(~) < 3 for all ~ <

then x Is called a minimal state j vector.

The existence of such minimal state 3 vectors follows from

the definition. Further, it is clear that $(~) > 3 if and only if

> x for some minimal state 3 vector x.

By monotonicity, it follows that •(xvy~) > $(x) V and V

< •(x) ~ $(y) .  In the next proposition, we Investigate

the implications of equality.

Proposition 2.2. Let •(x) be a coherent system. Then:

(i) $(xv~ ) = $(x) V $(y~) for all x,z > 0 if and only if’

•(x) — max x4.
l<i<n

(ii) •(xA~) •(x) A •(~) for all x,~ > 0 if and only If

$(x) — m m  x1.— lCi<n

Proof: In both cases the “if” part is easy. To demonstrate

the “only if” part of (I) we assume that $(xv~) — •(x) ‘
~~ 

$(y) for

V 
all x,j > 0. By coherence we have that for any component I and

state 3 > 1, there exists a vector x such that $((J—l)1,x) ‘
But •(31,x) — max{~ (J1,0),max $((xk)k,0)) andk~i 

-

— max{$(j—i)1,O),max •((xk)k,0))}. Hence •((J~l)~ ,O) <
k~1I 

—

This holds for all states 3 ) 1. Hence 0 — •(0) c •(l~~O) V

V

_ _ _  

V 

_ _  _ _ _ _  

j
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< ...< $(j1,O) < j. This string of inequalities forces ~(j1,O) = j

for any component I. Then 4 ( x )  = max f~ ((x1)1,o)} = max x1.l<I<n — 

h im

The “only If” part of (ii) follows from (I) and the concepts

of’ duality.

We note that the conclusions of Proposition 2.2 hold if 4(x)

is strongly coherent since strongly coherent Implies coherent.

The next example will show that the hypothesis of Proposition 2.2

cannot be weakened to weakly coherent systems.

Example 2 3 .  Consider once again the system of example 2.2.

It was shown to be weakly coherent but not coherent. Further,

since $(0,2) = 1, 4(x) Is not max x.1. We will now show that It
l<i<n -

satisfies $(xvy) = $(x) V $(~) for all x,~ > 0. By Its monotonlcity,

> •(x) V 4 (i) . To complete the proof It suffices to show

two Implications. One is that if’ $(xv~~) 2 then ~~x) V = 2.

The second is that if 4 ( x )  v 4~
(
~

) = 0, then c~(xvy ) = 0. FIrst

assume that ~(xv~ ) = 2. Then x ~‘ > (2,0) and thus x1 
= y1 

= 2.

Thus $(x) = = 2 and ~~x) V $(~) = 2. Now assume •(x) V 4(y~) 0.

Then $(x) = $(~) 
= 0. Hence x,~ < (1,0), so that x2 = y2 

= 0

and x1 v y1 < 1. Therefore p (xV .~) = 0.

Next we consider the idea of modules In the multistate setting.

We are Interested here in determining whether the relevancy of a

component within a module and the relevancy of’ that module within

a larger system would entail the relevancy of’ the component within

the larger system. We first show by an example that this will not

necessarily occur In the case of weak relevancy.

V - V - ’  V ~‘ - - ~~~~~~~~~~~~~~~~~~~~~~~~~ - ————_,1
____________________________

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ‘— .— - ~~~~~~~~~~~~~ -~~~~
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Example 2. l.~ Consider again the structure function of example

2.2. If we define q,(x1,x2,x3
) = $(4~(x1,x2 ) , x

3
), it can be shown

that ~p(x1,0,x3) 
= p (x1,2,x3

) for all x1 and x3
.

For coherent and strongly coherent systems it is easy to show

that a relevant component within a relevant module is relevant In

the system. For coherent systems this follows from the fact that

if component I of a module 4~(x) is relevant, then for all states

3 > 1, there exists a vector x such that ~j~((j—l)1,x) < ,js(31,x).

Further there exists a vector y
~ 
such that $(~ (j1,x)—l,~) <

Thus 4(*((j—i)1,x),~ ) < ~(~ (J 1,x),~ ) and component I of the module

is relevant in the system.

For strongly coherent systems, if component I of a module

4~(x) satisfies the strong relevancy condition then for any state 3,
there exists a vector x with ~p(j1,x) = j while ~(t~~x) 

~ 3 for

2. ~ 3. Next there exists a vector ~ such that q (q,(j1,x),~j~) = j

and •(k1,y~) ~ 
j for k ~ t~’(j1,x). That Is, ~~ I,(2.1,x),~~) ~ 3 for

£ # 3. Thus, component ~ of the module satisfies the strong rele—

vancy condition within the larger system.

-- ~~~~~~~~ --_

_
~~~~~~~~~~~~~
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3. Stochastic Performance of ’ a System

In this section we consider the state of component I, represented

by X1 to be a random variable. Further we assume that for distinct

I and 3 that X~ and X~ are Independent. We are interested In

making precise the way in which Improved component performance

affects system performance. There are two ways to parameterize

component performance. One is to let Pjj = P~X1=i] for

• 3 = 1,2,..., M, (p10=1—~~~p13). Then the vector (p11,..., 
~jM~

describes the distribution of X1. Another parameterizatlon is to

let p13 
= p~~ for j > 1. Then 1 > p11 > ... > > 0. Given

11~~
•
~~ 

one can determine (p11,..., 
~jM~ 

and conversely.

We shall choose to use the ~1~ ’s as parameter since ImprovF g

component I (I.e. the improved component is stochastically better

than the original component ) Is equivalent to Increasing all of

the p
u’s. We use the concept of expected utility to describe

system performance since this results In wider applicability than
V the use of the expected value.

Now let h
3
(p) = P~~(X) j~ for 3 > 0 and let 0 m a0 m a1 m ..•m aM

represent the utilities attached to the various states of the

system. We shall assume a0 = 0 without loss of generality or ap—
TI

phIcability. Then the expected utility U(p~) Is U(p) = ~ a1h1 (2).
-
~~~~ 3=1 ‘) “

If a
3 

= 3 for all 3,  then U(p) = E~~\p (X)] . We note at this  time

that if b1 = a1 and bk ak — a~~~1 for k = 2,..., M then
M M M

tJ (~~) = ~ a
3
h
3(2) ~ b~H~(~ ) where 11~(o) = 

~

‘ h (p) P[4(x)>1 1.
3= 1 1=1 ,j=i

-—- —-- V — - -•‘-——-----— — ir—.__ • - — - —
~~~

,— —-V- —

- -- - - —-~~~~~~ 
V. V _ V V ’ ~~_~ V — - - ~~~~~~~ n.— -——— -

- - -  V 
~~~~~~~~~~~~~~~~~~~~ ~~ ~‘ V ~ V ~V_~~~~ —I - .— — ~~~~~~~~~ —~~~~~~~~~ -
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We first mathematically formalize the idea that improved

component performance results in improved system performance. V

V Lemma 3.1. Let •(x) be a ?,INS and ~ and ~ * be two distributions

with = for all j  and for all k ~ i and p 1~ < for all 3 .
Then for any a £ {0,l,..., M) P[,(X)>aJ < P*~~(X)>aJ where p is

computed under ~ and P* is computed under p *~

Proof:
Consider .ndependent random variables X1,..., X1.~ (X~,... , X~)

with distribution given by ~(by ~~~*). Then X~ ~ X~ and Xk 
E

for k ~‘ i. Since • is an increasing function in each of its

components , •(X) •(X*). Then for any a c {01 ,..., Ml ,

‘ [.(x) >a] < P ~ (X*) >a] = 
~ Qc) >a (.

Lemma 3.2. Let •(x) be a monotone system and o and p* be

two probability distributions such -that pj~ p
~~ for all I and

t > 1. Then P [s (X)>al < ~ * ~~(X)>aJ for all a c {0, 1,... , Ml.

Proof: Omitted .

,From these lemmas we have a proposition formalizing the notion

of system improvement in terms of expected utilities .

Proposition 3.1. Consider a monotone system ,(x) with

associated utilities 0 = a
0 < a-

1 < • . •  < a~ . Suppose that ~ and p*

are two probability distributions with < for all ~ > 1

and all I. Then U(~) <

Proof: Omitted

I_ i

_ _ _  _ _ _  •~~~~~~~~~~~~-
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1L Reliability Importance In Multistate Systems

A basic concept of component importance Is due to Blrnbaumn

(see Chapter 2 of ii]). In this section we attempt to generalize

Birnbauni’s reliability importance to the multistate setting. We

begin by recalling some of the properties of Birnbauin ’s reliability

importance for binary systems of binary components. If h(E) is

the system reliability function, then:

(1) 1(1) = (where this partial derivative is evaluatedp1
at the present reliabilities).

(II) 1(1) h(l1,p) — h(0
1,2~

) = E~~(l1,X)] — E~~(0i,X)].

(iii) 1(1) = P[+(l1~X) l and

(Iv) h(p) = p11(I) + h(01,p.) (a version of the pivotal decom—

position).

Notice that (Iv) Implies that h((p1+~)1,~ ) = h(2) + AI (i) thus

demonstrating that a component Improvement of ~ in component I

yields a system improvement of ~I(i). We shall see that there is

a vector which generalizes these properties to the multistate

setting.

Consider a multistate system with expected utility
M TI -

U(~ ) = ~ a
3
h
3
(~ ) = ~ b

3
H
3
(p) as before where b

3 ~ 
0 for all 3 .  Define

3=1 3=1 
-

12.3(1) = P~$(t1,X)>3] — P~p((L=l)1,x)>3)} for all I and all £ and
M

H 3 > 1. Further define I
~
(i) = ~ b I2.3(i) and3—1

1(1) = (11(1)112(1),..., IM(i)). We shall call 1(1) the importance

vector of component I.

—— V V~V~~V V -V V V~ • V V  V V V V - - ~~~ ‘V~~___J_

—-V —--—~~~~~~~~~~~~~~~~~~~~~~ - —- -- 
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Proposition 11.1 (General Decomposition).

U(~ ) = 

,~~~~~ 

b
3
P~j(011X)>3] + 1(1) . ~~~

.1
T where 2.j (p11,p12,..., 

~iM~~

Proof: We write P~$(X)>j~ as 
~ P\p (&I,X)>i~P~X1ii1&] and

replace P~X1=L~ by ~~~ 
- 

~~~
1 £+1

• By a rearrangement of’ terms and a

change of variables it can be shown that P1~+(X)>J~ =

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Then U(~) = 
~ 

b
3
PI,p(011x)>JJ

+ ~ b fP~~(t1, j]_P p ((L_l)1,~)>~Jpp 12. = ~ b P[$(01~~~~ij£=l 3=1 - 3=1

+ J1 I2.(I)p12. = 

~ 
b
3
P~+(01,X)>j~ + ‘(I) .

From this proposition we Immediately have the following by

partial dIfferentiatIon.

- 

- PropositIon 1L2. 1(1) = grad U(~) where are treated as

V fixed for 3 # I and k = 1,..., TI. This proposItIon says that if

the marglnals for X3, 3 # I are fixed and expected utility is
viewed as a function of the 1th component , 1(1) grad U(~ ).

Proposition ‘L3. If a
3 

= 3 so that U(a) = E
2~
+(X)] then

I(i)=(~~~ {P~,(11,x)>3J_P [.(01,X)>j] I

E[$(2i,X)] _E1,(].11x)],... , E~,(M11~ )]_E[+((M_l)11~)j).

Proof: If a
3 — 3 for 3 — 0,1,..., M, then b

3 
i. for

3 — 1,2,..., M. The conclusions of’ this proposition follow from

the arguments given in the proof of Proposition ~l .l.

_ _ _ _ _ _ _ _  
_ _ _ _ _ _  ~~~~~~~~~ :~~ ~~~~~~~~~~~ ~~~~~~~~~~
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Proposition ~~ I. If component I is stochastically improved

V from a distribution to a distribution 2.~ ~ 
then the change

in the expected utility is 1(1) . A~ where = p
~3 

— p
13 for all

3 = 1,2,..., M.

Proof: Immediate from PrcposltIon 11.1.

In the case of binary systems of binary components, it Is

possible to order the components by Birnbaum ’s reliability Impor-

tance If one is interested in determining the Influence of compo—

nents on system reliability. In the multistate case, for any

given improvement vector A , one can calculate 1(i) . and

1(3) . A~~~~. In general, however, the rankings depend on A unlike

the binary case where the rankings were independent of’ the improve-

ment A . In a certain Interesting case, however, we can obtain a

V ranking which does not depend on ~~.

Proposition 11.5. If the Improvement vector is A = Al where

A is a positive scalar, then the expected utility Is Increased

more by applyIng the improvement vector to component I than by

applying It to component 3 if and only If ((1(1)11 > ((I(j)~~M
where I 1111 — 1 1 V1 .i—i

Proof’: If’ 6 — (6,A,... , A), then the Improvement in expected

utility due to an improvement of A In component I Is A III(1 )II .

LIkewise the corresponding improvement in expected utility if the

improvement Is applied to component 3 Is A IJ I (J )I I . The result

then follows Immediately.

— . - V - - V . -  V~~~~~~ V_ V — V .

~

—

~

—

~
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The situation described in the hypothesis occurs, for Instance ,
in the case that the components are actually binary so that

P~x1
nl~ = .,. - P1X1aM—l

1 — 0 for all 1. Then improving component

I would mean Increas ing P~X1~’M~ by A -thus decreasing P[Xj—01 by A ,
thereby obtaIning an improvement vector of Al.

Finally, we consider an example which illustrates the use of

this last proposition.

Example 1L1. Consider an n component system in which

p
~x1=o] = p10, P~X1—n~ — 

~~~ 
with p10 + 

~in 
= 1 for all 1. Then

P[x1=J1 = 0 for 1 < 3  < n — 1 and all I. Consider the structure

function $(x) - I x1] which Is stochastically equal to thei—i
number of components in state n. Further assume that the utilities

attached to the var ious states are 0 = a0 < a1 < ... < a~ and let

V bk — ak — ak_i for 1 < k < n. For sake of definiteness we will

compute 1(1) and 1(2). We will compare these under certain assump-

tions on the utility function.

By definition, It(1) ~ b I~ (1), where
3—1 ~

1tj (l)  — P~$(t ,X2 , . . .,  X~ )>3) — P[
L
$(t_ i ,X2 , . . . ,  X~ ) >3].

For L < n , I
~j

(l) O
~

and I~j(l) — P {Z  X~ (J_1)n].

n
Hence for & < n , — I b

3 
I~~~(1) 0

j—1

and i~~(l) 
~~~ 

b
3 

I~~~(1) — b
3 P {I  X~ — (i_ 1)nJ .

_ _ _ _ _ _ _

— -_ ~~~~~~~~ ~~~~~~~~~~ ~
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Consequentl y 111(1)11 — ) b 41 X — (j-1)n~
3 1—2

—~~~~~~b P [Z  X — (j-1)n , X — o l
3— 1 3 i—3 .1

n n
+ I b P11 X1 — (j-2)n, X — n

3—2 i Lj 3  2

— } b
3

(l-p~~ ) 

~~ 
X1 

— (j . i)n~

+ 

j~~2 
b

3 ~2n “{j~~ xi — (j -2)n ~

— ~~~b P L I  X~~—
j—i i i—3 -

- 
~ 

n~l 
b ~ X - (j-1)n

n il_ i I j
~3 

-

+ 1’2n j~~2 
b

3 P [ 1  X~~~ (3_2)n]

—~~~~~ b ~[Y x — (j_l)n] V

~~
_ i  .1 i—~ ~ -

- 

- 

- 
~2n ~ 

b
3 P {I  x1 

— (3_ 1)n }

+ 1 bk+l P [Z  X~ — (k_1)n}

j

_  
_ _ _  

_ 
_  

I

- - V __________  
- V V_~~~ _ V V~~~V V _ ~~~~~~~~ V~ - -_____

___________ - _____  ~~~~~~~~~~ 

- -- - -- -
-
-- —-—-- - - ------

~~~~~~~~~~~

---

~

-- — - — -

- -~~~--—- - V-~~- V~~-- V V - - V - . -~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
-__ -~
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— 
~ 

b~ P[I X~ — (i_1)n] + 
~2n 

~ 
(b

3÷1 
- b

3
) Pf I X1 

— (J_1)n]

In a completely analogous fashion , it can be shown that

111(2 )11 — ~ b
3 P{Z 

X1 
— (i_ l)n] + p1 q(b3+1 - b

3
)

V 

Pf) X — (i_l)n}.
1—3 1-

Next we consider three types of utility function s for which

a comparison between I 11(1) II and I (2)11 may be readily made .

If the utility function is linear then 111(1) 11 — 1 11(2)11. If

the utility function Is convex , so that the b1
’s are increasing ,

then 111 (1)11 ~ I 11(2)11 if and only if 
~2n ~ 

In other words,

the more important component is the less reliable one if the

utility function is convex. In the case where the utility function

V 
- is concave the situation is reversed. In this case I 11(1) II ~~. I 1(2) ~

if and only ~~ P2n ~ ~ln 
That is, for a concave utility function

the more important component is the more reliable one.

Thus for increasing the system ’s expected utility the components

-are ord 4red in impor tance (from most to least) by their reliabilities

if the utility function is concave and by their unreitabilities if

the utility function is convex . 
- -

_  
- - V  - —--- - 

______ ___ _

_ _

— : - 

~~~~~~~~~~~~~~~

‘-

~~~~~~
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